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Abstract - In diagnosis of COPD (Chronic Obstructive 
Pulmonary Diseases), spiromerty is an important 
"Pulmonary Function Testing" in the medical evaluation 
of patients. Spirometric measurements FVC & FEV1 are 
very important to control the treatment, but some 
difficulties such as incompleteness, inaccuracy and 
inconsistency are encountered during the test. "Fuzziness 
in  Spirometry" is very important “real-world problem”. 
Even if it is almost impossible to find ideal mathematical 
equations, ideal prediction formulas and ideal 
propositions defining the  behaviors formulated ideally 
satisfying the real-life, it is  possible to define inexact 
medical information and findings as fuzzy sets. 
Furthermore, because of collected data just lying on the 
border-line cannot be strictly or clearly defined either 
"normal" or "abnormal", the physicians may 
misinterpret some criteria or indications. For such kind 
of reasons, it is needed a formal model of distinguishing 
COPD group diseases (chronic bronchitis, emphysema 
and asthma) by using fuzzy theory and to put into 
practice a “fuzzy rule-base”. Purpose of this study is to 
construct a fuzzy rule-base model for designing a “COPD 
Diagnosing Fuzzy Expert System by Classifying 
Spirometric FVC Plots”.  
 
Keywords - asthma, chronic bronchitis, COPD (Chronic 
Obstructive Pulmonary Disease), emphysema, expert 
systems, FVC (forced vital capacity), FEV1,  fuzzy logic, 
knowledge-base, membership function, rule-base, 
spirometry, VC(vital capacity). 
 
 

I. INTRODUCTION 
 
A. Fuzziness in Spirometry  
  
   Real-world is characterized by incompleteness, inaccuracy 
and inconsistency. And there is no need to deal with micro-
reasons underlying the events to solve the real life problems 
as incompleteness, uncertainty and inconsistency. Because, 
there may not be a solution for the problem, or the approach 
for the solution may have very complex and time-spending 
algorithm. As a real life problem, imprecise information is a 
fact in medical measurement. Problems of incompleteness, 

uncertainty and inconsistency in medical decision have vital 
consequences for the patients [1, 2]. Medical data measured 
or collected about the patient can be characterized according 
to fuzziness [3]. Additionally, the medical history for the 
patient may  not be objective,   i.e.  may  be  exaggerated  or  
ignored [4-6]. A physician may make mistakes or may 
misinterpret other criteria or indications because  the 
boundary between “normal” and “abnormal” status is not 
clearly defined, or fail to carry out a complete test for 
diagnosis [6-8]. Even though the results of the laboratory 
tests are thought as objective;  errors encountered,  improper 
behavior of the patient just before or during the tests can lead 
to imprecise and incorrect data. Additionally, the measured 
and collected data just lying on the border-line cannot be 
strictly or clearly defined either “normal” or “abnormal” [1-3, 
11]. Information on medical definitions and evaluations may 
have incompleteness and uncertainty [1-3]. This kind of 
medical knowledge is composed of knowledge about the 
causal relationships, statistics, expert interpretation. Medical 
relationships depend on time or place and medical approaches  
and  interpretations depend on schools, as well [1-13].  
 
   Spirometric FVC & FEV1 measurements are very 
important to control the treatment [10-19], but some 
difficulties such as incompleteness, inaccuracy and 
inconsistency during the test [3-7]. Because of the cases of 
lack of measurement, patients effort or cooperation during 
the test, and physicians' interpretations  may cause fuzzy data 
collection [2, 3]. Especially, analyzing data collected or 
graphs plotted is not easy to categorize, recognize or 
distinguish for the group of chronic bronchitis, emphysema 
and asthma because of  these reasons [4-7]. Additionally, 
similar symptoms may cause fuzziness in physicians’ 
interpretations [1-3]. 
 
B.  Early Studies on Spirometry & Fuzzy Approach 
    
   FEV1/FVC ratio is a desirable criteria to define the patient 
whether he/she has obstruction, restriction  both  or no  
problem  for  his/her lung,  FEV1 and FVC tests are the most 
frequently used pulmonary function tests [12-20]. There are 
so many useful prediction formulas obtained from pervious 
studies on spirometry. The “predicted values” for this ratio 
and  prediction  formulas  have  been  published [12-15].  The  
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TABLE I   
VOLUNTEERS CATEGORIZED INTO 8 GROUPS. 

 

Gr. 
no Gender COPD Symptom Smoking 

1 Female No No 
2 Female No Yes 
3 Female Yes No 
4 Female Yes Yes 
5 Male No No 
6 Male No Yes 
7 Male Yes No 
8 Male Yes Yes 

 
use of  FEV1/FVC  is suggested for determining the presence 
of “airway   obstruction”.   The   value  of  the  ratio  is 
observed by  spirometric  measurements   for  discrimination   
between  pulmonary  impairment  due  to  restricting  cases  
or  airway  obstructions  can  be  observed  which  is  the  
first appear in that study evaluation of the FVC and 
FEV1/FVC as “normal” or “low”, which is a fuzzy theory 
approach  [12, 13] 
 

II. EXPERIMENT 
 

Medical inference is the use of medical knowledge to infer 
a diagnosis from the symptoms, laboratory results and 
medical history of the patient. This is complex work with 
uncertain, exaggerated or ignored, incomplete and 
inconsistent data [1-3, 9-11]. 
 
A. Experimental Setup and Data Collection  
 
   For 200 voluntary  university students at IBU, in Turkey, 
spirometric FVC and VC measurements performed in by 
using a wedge bellow type spirometer [9, 10].  In this study, 
first of all, for each subject, a questionnaire was filled out 
before test which is very important criteria for each subject 
for investigating are smoking cigarettes, having asthma, 
chronic bronchitis or pneumonia, persistent cough, chest 
wheezing, having any chest injury and operation, and 
working  in  air polluted area for a long time [9, 12]. 
Secondly, observed FVC and FEV1 data plotted are taken 
under investigation. According to the questionnaire filled out, 
subjects categorized in groups [9, 10].  
 
B.  Mathematical Modeling and Results  
 
   For each FVC plotted by the spirometer for each subject, 
the best fitted curves and their equations calculated and the 
coefficients of predicted curves have taken under 
investigation as fuzzy values [9, 10]. This model, which 
provides more reliable equation constants for FVC value at 
t=1 sec. is closer to the observed values rather than the others 
[9]. After a series  of   “mathematical modelling”  process, it 
can be found some kind of curve equations which are the best 
fitted ones and  exact values can be calculated by using these 
equations for FEV1. In mathematical modelling proccess, the  

 

 
Fig.1.  Inference machine with 3-input model 

 
best fitted curve equations and their coefficients investigated 
with respect to incompleteness for subjects with COPD, 
compared to the coefficients for healthy subjects to get more 
reliable constants [9, 11]. For some healthy subjects with the 
same height and ages, although their predicted FEV1 are the 
same, relatively big differences for the observed ones, that is 
defined as “degree of inconsistency” [1-3, 9, 11]. Fuzziness 
in constants of mathematical expressions derived comes from 
this inconsistency. This mathematical study summarized as 
follows [9-11]: 
 
a. This study [9] showed that “fuzzy logic theory” can be 

used in categorizing the FVC graphs with high levels of 
confidence [10].  

b. The best fitted curves generated for the spirometric plots 
[9] are highly accurate in order to investigate the 
relationship between the characteristic coefficients of these 
curves and the degree of the disease, and the FEV1 values 
for the subjects under investigation, as well [10].  

 
C. Fuzzificatin of The Best Fitted Curves’ Coefficients  
 
  Constants for mathematical equations derived for FVC plots 
for each subject for 8-groups under investigation are fuzzified 
and normalized for fuzzy labels “VeryLow”, “Low”, 
“Normal”,  “High”   and   “VeryHigh”   for  FVC  and  FEV1   
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Fig. 2.    Rule-Base set for the simulation for this study. 
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 Fig. 3.   Simulation: Rule-Base and Mamdami method for inferencing. 
 
levels  are  shown for  each  group  as  shown in the TABLE  I 
[1-3, 8, 9]. 
 
D.  Generating Rule-Base  
 
   Fuzziness in medical information and elimination of 
complexity between medical relationships and fuzzy 
information   need   defuzzification.   For  medical  diagnosis, 
relationships in theory, expert interpretations, statistics, 
laboratory and instrumental results must be put together to 
get  rules  for  defuzzification  and  then  get  exact   solution. 
Degree of fuzziness (uncertainty level) of the disease must be 
defined. The defuzzification needs to generate rules to get 
exact  results  using  by  theoretical,   experimental laboratory 
tests  and  measurements  and  expert  information.   In some 
fuzzy cases, it is  seemed to be in the confidence limits of the 
normal cases. But, falling below or seeming to fall below the 
confidence limits of the normal cases misleads the physician 
to interpret the spirometric results. Also, using the prediction 
equations and the medical information obtained from patient 
to be manipulated together may give uncertain,  exaggerated 
or ignored, incomplete and inconsistent results [1-3, 7-11].  

 
Fig. 4   Result of the simulation for COPDrisk 

TABLE II 
SIMULATION FOR “COPDrisk” RESULTS WITHIN %3 CONFIDENCE 

LIMITS FOR MALE VOLUTEERS. 
 

 % COPDrisk FEV1 
level  FVC =1 FVC = 0.99 FVC = 0.98 FVC = 0.97 
0.5  96.2 96.1 96 95.8 
0.6  95.7 82 85.9 72 
0.7  95.6 82 85 71.1 
0.8  94 83.9 85.6 72.3 
0.85  9.54 8.32 8.6 72.1 
0.86  4.62 4.65 7.6 4.45 
0.87  3.13 3.34 3.5 3.46 
0.88  1.87 1.86 1.83 1.79 
0.89  1.65 1.65 1.64 1.16 
0.90  0.39 0.61 0.78 0.94 
0.91  0.4 0.63 0.78 0.94 
0.92  0.4 0.68 0.84 0.9 
0.93  0.4 0.68 0.84 0.9 
0.94  0.4 0.63 0.78 0.8 
0.95  0.39 0.39 0.4 0.42 
0.96  0.38 0.39 0.4 0.42 
0.97  0.38 0.39 0.4 0.42 
0.98  0.38 0.39 0.4 0.42 
0.99  0.38 0.39 0.4 0.42 
1.00  0.38 0.39 0.4 0.42 

 
   According to this approach [9, 10], membership functions 
for each label assigned. For such a diagnosis system (Fig.1) 
with two inputs FVC & FEV1 levels, a rulebase and a 
“mamdami defuzzification module” defined to design an 
expert system as seen in Fig. 2 and Fig 3 [8-10].   
 
E. Simulation 
 
  By embedding membership functions defined for each for 
input variables FVC & FEV1, and as an output variable, 
COPDrisk is defined with necessary membership function [9, 
11]. By using the rulebase defined, and mamdami 
defuzzification, the simulation performed for “COPDrisk 
Percentage” results for normalized FEV1 values within %3 
confidence limits of the normal cases for different normalized 
FVC values for healthy man is seen in TABLE II [9-15, 20-
22].  
  
   After execution of the diagnosing program designed as an 
expert system [7, 9] used to categorize the spirometric FVC 
plots for the volunteer students. As an example, for a 
volunteer student with “VeryHigh” COPD symptom (acute 
bronchitis), the simulation result and the execution all of the 
rules presented in Fig. 3, after the treatment FVC and FEV1 
levels measured gave the result “COPDrisk” as “High” [9]. 
The numerical result for the full-range simulation for FVC 
and FEV1 obtained as 3-D graph plotted by this program.  
 

III. RESULTS AND DISCUSSIONS 
 
   As a mathematical conclusion or fuzzy logic approach, this 
study proves that fuzzy logic can be used in categorizing 
spirometric FVC graphs with high levels of confidence and, 
the best fitted curves defined for the FVC plots of spirometry 
used [9] are highly accurate to investigate the relationship 
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between the characteristic constants of these best fitted 
curves and the degree of the disease, and the FEV1 measures 
for the subjects under test.  
 
   In this study, FVC graphs categorized with respect to 
“degree of COPD” by fuzzy logic. Additionally, FEV1 and 
FEV1/FVC ratio is used as important criteria to define each 
rule for the rulebase that is implemented for core of a COPD 
diagnosis program for clinical investigation.   
 
   High number of FVC graphs and corresponding FEV1 
measures helped to define more accurate rules. Because, the 
accuracy of the membership functions for each fuzzy variable 
depend on the number of data collected, statistically.  
 
Recommendations of Further Research 
 
   In the next studies, effect of questionnaire filled in by each 
subject on the result of the diagnosing (categorizing FVC 
graphs) COPD, elimination of erroneous factors affecting the 
results and, narrowing the confidence interval will be 
investigated to get more accurate results. 
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